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The form of a local Clifford �LC, also called local Gaussian �LG�� operation for the continuous-variable
�CV� weighted graph states is presented in this paper, which is the counterpart of the LC operation of local
complementation for qubit graph states. The property of the CV weighted graph states is shown, which can be
expressed by the stabilizer formalism. It is distinctively different from the qubit weighted graph states, which
cannot be expressed by the stabilizer formalism. The corresponding graph rule, stated in purely graph theoret-
ical terms, is described, which completely characterizes the evolution of CV weighted graph states under this
LC operation. This LC operation may be applied repeatedly on a CV weighted graph state, which can generate
the infinite LC equivalent graph states of this graph state. This work is an important step to characterize the LC
equivalence class of CV weighted graph states.
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Graph states �1,2�, or equivalently called stabilizer states,
are special instances of multiparty quantum states that are of
interest in a number of domains in quantum-information
theory and quantum computation. Graph states can be de-
fined in terms of the stabilizer formalism, which is a group-
theoretic framework originally designed to construct broad
classes of quantum error-correcting codes—the stabilizer
codes �3�. In addition to their role in quantum error correc-
tion, graph states have been used in a number of interesting
applications, where the measure-based model of quantum
computation known as the one-way quantum computer is
certainly among the most prominent �4�.

Most of the concepts of quantum information and compu-
tation have been initially developed for discrete quantum
variables, in particular two-level or spin-1

2 quantum variables
�qubits�. In parallel, quantum variables with a continuous
spectrum, have attracted a lot of interest and appear to yield
very promising perspectives concerning both experimental
realizations and general theoretical insights �5,6�, due to rela-
tive simplicity and high efficiency in the generation, manipu-
lation, and detection of a continuous variable �CV� state. CV
cluster and graph states have been proposed �7�, which can
be generated by squeezed state and linear optics �7–9�, and
demonstrated experimentally for the four-mode cluster state
�10,11�. The one-way CV quantum computation was also
proposed with the CV cluster state �12�. Moreover, the pro-
tocol of CV anyonic statistics implemented with CV graph
states is proposed �13�.

It is well known that many graph states exhibit a high
degree of genuine multiparty entanglement �14�, and that this
entanglement is a key ingredient responsible for the success-
ful use of these states in various applications. Therefore, a
detailed study of the entanglement properties of graph states
is of natural interest. The study of the nonlocal properties of
graph states naturally leads to an investigation of the action
of local unitary �LU� operations on graph states, and a clas-
sification of graph sates under LU equivalence. Especially, a

subclass of LU operations known as local Clifford �LC�
plays an important role. Due to the close connection between
the Pauli group, the stabilizer formalism and the local Clif-
ford group, the action of LC operation on graph states can be
described efficiently. Recently, the action of LC operations
on qubit graph states can entirely be understood in terms of a
single elementary graph transformation rule, called the local
complement rule �1,15�. A systematic classification of LC
equivalence of graph states has been executed �1�. An effi-
cient algorithm �i.e., with polynomial time complexity in the
number of qubits� to decide whether two given stabilizer
states are LC equivalent, is known �16�. The LU-LC equiva-
lence problem still as a long-standing open problem in
quantum-information theory, has achieved progress recently
�17�.

In the regime of the continuous variable, the LC equiva-
lence of the CV graph states has just begun to be studied.
The local complement rule was extended to the associated
graphs of the CV unweighted graph states �18�. The simplest
phenomenon was discussed �18�, in which the corresponding
LC operation was presented for the local complementation
on four-mode unweighted graphs. It was shown that the cor-
responding LC operation for the local complementation can-
not exactly mirror that for qubit, which is not a single form
compared with qubit. This result shows the complexity of
CV quantum systems. Whether the local complementation
for CV unweighted graphs can be implemented completely
by the LC transformations and the general form of the cor-
responding LC operation can be found are still an open ques-
tion. In this paper, we consider another way to investigate
LC operation of CV graph states as shown in Fig. 1. First,
the corresponding LC operation of local complementation
for qubit graph states is generalized to CV graph states. Sec-
ond, the CV weighted graph states is defined, which can be
expressed by the stabilizer formalism in terms of generators
within the Pauli group. It is distinctively different from the
qubit weighted graph states, which cannot be expressed by
the stabilizer formalism �14�. The action of this LC operation
on the CV weighted graph states is described by the graph
rule. Thus, the successive application of this LC operation*jzhang74@sxu.edu.cn; jzhang74@yahoo.com
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can generate the LC equivalence class of a CV weighted
graph state with the infinite elements. It is worth remarking
that, whether the whole LC equivalence class of a CV
weighted graph state can be obtained by repeatedly applying
this LC operation, still must be further investigated. In other
words, what is the whole LC equivalence class of a CV
weighted graph state and how do we achieve it by LC op-
erations?

First, the CV operations �19� are presented briefly in the
following. For CV, the Weyl-Heisenberg group, which is the
group of phase-space displacements, is a Lie group with gen-
erators x̂= �â+ â†� /�2 �quadrature amplitude or position� and
p̂=−i�â− â†� /�2 �quadrature phase or momentum� of the
electromagnetic field. These operators satisfy the canonical
commutation relation �x̂ , p̂�= i �with �=1�. The single
mode Pauli operators are defined as X�s�=exp�−isp̂� and
Z�t�=exp�itx̂� with s , t�R. These operators are noncommu-
tative and obey the identity X�s�Z�t�=e−istZ�t�X�s�. In the
Heisenberg picture, applying a Hamitonian H gives a

time evolution for operators Ȧ= i�H ,A�, so that A�t�
=exp�iHt�A�0�exp�−iHt�. Accordingly, applying the Hamito-
nian H= x̂ for time t takes x̂→ x̂ , p̂→ p̂− t, and applying
H=−p̂ for time s takes x̂→ x̂−s , p̂→ p̂. The Pauli operator
X�s� is a position-translation operator, which acts on the
computational basis of position eigenstates as X�s��q�
= �q+s�, whereas Z is a momentum-translation operator,
which acts on the momentum eigenstates as Z�t��p�= �p+ t�.
The transformation of the Pauli operators on the basis of
position �momentum� eigenstates may be derived as follows.
Let x̂�=X�s�x̂X�−s�= x̂−s, and consider x̂��q�. On the one
hand, it must be x̂��q�= �x̂−s��q�= �q−s��q�. On the
other hand, it also is x̂��q�=X�s�x̂X�−s��q�=X�s�x̂�q−s�
=�q−s�X�s��q−s�= �q−s��q�. Thus X�s��q�= �q+s� is the cor-
rect operation. Similarly, it may be shown that Z�t��p�= �p
+ t� is also the correct transformation. The Pauli operators for
one mode can be used to construct a set of Pauli operators
�Xi�si� ,Zi�ti� ; i=1, . . . ,n	 for n-mode systems. This set gen-

erates the Pauli group C1. The Clifford group C2 is the nor-
malizer of the Pauli group, whose transformations acting by
conjugating, preserve the Pauli group C1; i.e., a gate U is in
the Clifford group if URU−1�C1 for every R�C1. The
Clifford group C2 for CV is shown �19� to be the �semidirect�
product of the Pauli group and linear symplectic group
of all one-mode and two-mode squeezing transformations.
Transformation between the position and momentum
basis is given by the Fourier transform operator
F=exp�i�� /4��x̂2+ p̂2��, with F�q�x= �q�p. This is the gener-
alization of the Hadamard gate for qubits. The phase gate
P���=exp�i�� /2�x̂2� with ��R is a squeezing operation for
CV and the action P���RP−1��� on the Pauli operators is

P���:X�s� → e−is2�/2Z�s��X�s� ,

Z�t� → Z�t� , �1�

in analogy to the phase gate of qubit. The controlled-Z �CZ�
operation is generalized to controlled-Z�CZ�. This gate CZ
=exp�ix̂1 � x̂2� provides the basic interaction for two modes 1
and 2, and describes the quantum nondemolition �QND� in-
teraction. This set �X�s� ,F , P��� ,C−Z ;s ,��R	 generates
the Clifford group. Here the controlled operation with any
interaction strength CZ���=exp�i�x̂1 � x̂2� ���R� will be
used in the following. Another type of phase gate will also be
utilized, PX���=FP���F−1=exp�i�� /2�p̂2�, and the action on
the Pauli operators is

PX���:X�s� → X�s� ,

Z�t� → e−it2�/2X�− t��Z�t� , �2�

where PX���†= PX���−1= PX�−��.
A weighted graph quantum state is described by a math-

ematical graph G= �V ,E�, i.e., a finite set of n vertices V
connected by a set of edges E �14�, in which every edge is
specified by a factor �ab corresponding to the strength that
the modes a and b have interacted, as shown in Fig. 2. The
preparation procedure of CV weighted graph states is only to
use the Clifford operations: First, prepare each mode �or
graph vertex� in a phase-squeezed state, approximating a
zero-phase eigenstate �analog of Pauli-X eigenstates�, then,
apply the QND coupling �CZ���� with the different interac-
tion strength � jk to each pair of modes �j ,k� linked by a
weighted edge in the graph. Note that the CV unweighted
graph states are to use the QND interaction all with the same
strength. Since all CZ gates commute, the resulting CV

FIG. 1. �Color online� The diagram describing the LC equiva-
lence problem for qubit and CV graph states.

FIG. 2. �Color online� Example for depicting the CV weighted
graph state.
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graph state becomes, in the limit of infinite squeezing,
ga= �p̂a−
b�Na

�abx̂b�→0, where the modes a�V corre-
spond to the vertices of the graph of n modes, while the
modes b�Na are the nearest neighbors of mode a. This re-
lation is a simultaneous zero eigenstate of the position-
momentum linear combination operators. The corresponding
n independent stabilizers for CV weighted graph states are
expressed by Ga���=exp�−i�ga�=Xa����b�Na

Zb��ab�� with
��R. Note that it is distinctively different from the qubit
weighted graph states, which cannot be expressed by the
stabilizer formalism �14�. The main reason for this difference
is that the CZ gate for qubit is periodic as a function of the
interaction strength, however, the CV CZ gate is not.

The action of the local complement as the graph rule, can
be described as follows: Letting G= �V ,E� be a graph and
a�V be a vertex, the local complement of G for a, denoted
by �a�G�, is obtained by complementing the subgraph of G
generated by the neighborhood Na of a and leaving the rest
of the graph unchanged. The successive application of this
rule suffices to generate the complete orbit of any qubit
graph states. The corresponding LC operation of the local
complement for the qubit graph states is a single and simple
form, which is expressed by Ua

LC= �−i�x
�a��1/2�b�Na

�i�z
�b��1/2

�1,15�. This formalism may be straightforward to generalize
to CV weighted graph state, which is expressed by

ULGa
��� = PXa�− �� �

b�Na

Pb��ab
2 �� . �3�

Now the action of this LC operation on CV weighted graph
states is translated into transformations on their associated
graphs, that is, to derive transformation rules, stated in
purely graph theoretical terms, which completely character-
ize the evolution of CV weighted graph states under this LC

operation. The graph rule of applying this LC operation is
described as follows: First obtain the subgraph of G gener-
ated by the neighborhood Na of a, then reset the weight
factor of all edges of this subgraph calculated with the equa-
tion �bibj

� =�bibj
−�abi

�abj
�, at last delete all the edges with

the weight factor of zero, and leave the rest of the graph
unchanged. Here, a subgraph G�C� of a graph G= �V ,E�,
where C�V, is obtained by deleting all vertices and the
incident edges that are not contained in C. Figure 3 presents
an example of this graph rule applied on a CV weighted
graph state. The five independent stabilizers of the weighted
graph state number 1 �	�1�� are given by

G1
�1���� = X1���Z2��12��Z3��13��Z5��15�� ,

G2
�1���� = X2���Z1��12��Z5��25�� ,

G3
�1���� = X3���Z1��13��Z4��34�� ,

G4
�1���� = X4���Z3��34��Z5��45�� ,

G5
�1���� = X5���Z1��15��Z2��25��Z4��45�� , �4�

with Gi
�1�����	�1��= �	�1�� in the limit of infinite squeezing,

where i=1, . . . ,5. Applying the LC operation ULG1
��� to the

vertex 1, the five independent stabilizers of the resulting
graph state �	�2��=ULG1

����	�1�� are calculated by Eqs.
�1�–�4� and with the relationship ULG1

���G1
�1����

=G1
�1����ULG1

���, for example, calculating G2
�2����,

�	�2�� = ULG1
���G2

�1����ULG1

−1 ���ULG1
����	�1��

= �e−i�2��12
2 /2Z2���12

2 ��X2����


�ei��12��2�/2X1���12��Z1��12���


Z5��25��ULG1
����	�1��

= X2���Z1��12��Z5��25���X1���12��Z2���12
2 ���


 ULG1
���G1

�1��− ��12���	�1��

= X2���Z1��12��Z3�− �12�13���

FIG. 3. �Color online� Example of the graph rule of the LG
operation ULG1

applied on a CV weighted graph state.

FIG. 4. �Color online� Example of the graph rule of the LG
operation ULGa

repeatedly applied on a CV weighted graph state.
The rule is successively applied to the vertex, which is colored with
red in the figure.
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Z5���25 − �12�15�����	�2��

= G2
�2�����	�2�� �5�

to obtain

G1
�2���� = X1���Z2��12��Z3��13��Z5��15�� ,

G2
�2���� = X2���Z1��12��Z3�− �12�13���


Z5���25 − �12�15����

= X2���Z1��12��Z3��23� ��Z5��25� �� ,

G3
�2���� = X3���Z1��13��Z2��23� ��Z4��34��Z5��35� �� ,

G4
�2���� = X4���Z3��34��Z5��45�� ,

G5
�2���� = X5���Z1��15��Z2��25� ��Z3��35� ��Z4��45�� . �6�

which exactly correspond to the stabilizers of the number 2
weighted graph state in Fig. 3.

This LC operation may be applied repeatedly on a CV
weighted graph state, which can generate the LC equivalence
class of this graph state. Figure 4 shows an example of how
to repeatedly apply this rule to obtain the LC equivalence
class of a CV weighted graph state. Note that the elements in
the LC equivalence class of a CV weighted graph state, gen-
erated by the LC operation ULGa

, are infinite, and whether
the whole LC equivalence class of a CV weighted graph state
can be obtained by repeatedly applying this LC operation,
still must be further investigated.

At last, the graph rules of two extra and very useful LC
operations are presented. One of the LC operations is F2,
corresponding to the square of the Fourier transform opera-
tor, which is used in Ref. �18�. This operation has the effect
of taking F2x̂�F2�−1=−x̂ and F2p̂�F2�−1=−p̂. The graph rule
of applying this LC operation F2 on a vertex a is described
as follows: Add the negative sign on the weight factor of all
edges connecting the vertex a. An example for the LC op-
eration F2 is shown in Fig. 5. The other LC operation is

S�r�=exp�ir�x̂p̂+ p̂x̂� /2� with r�R, which is a quadrature
squeezing operation for CV corresponding to the phase-
sensitive optical parametric amplifier. The action of S�r� on
the position and momentum operators is S�r�x̂S�r�−1= x̂er and
S�r�p̂S�r�−1= p̂e−r, which means to stretch the position com-
ponent and squeeze the momentum component of an optical
field. The graph rule of applying this LC operation S�r� on a
vertex a is described as follows: Multiply e−r on the weight
factor of all edges connecting the vertex a. An example for
the LC operation S�r� is shown in Fig. 6. Note that whether
these two LC operations are the necessary transformations
for the LC equivalence of CV weighted graph states, still
must be further studied.

In summary, the corresponding LC operation of local
complementation for qubit graph states is extended to CV
weighted graph states. This LC operation may be applied
repeatedly on a CV weighted graph state, which can generate
the local Clifford equivalence class of this graph state with
the infinite elements. This work is an important step to char-
acterize the LC equivalence class of CV weighted graph
states. It is natural to raise the question with this work
whether a polynomial time algorithm can be found to decide
whether two CV graph states are LG equivalent and the ac-
tion of local Gaussian group on CV graph states can be trans-
lated into elementary graph transformations characterized by
several simple rules just like qubit graph states. Furthermore,
LU equivalence for CV graph states, which is the same as
that for qubit graph states, also is an open problem.
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